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C
ontrol systems assume a
constant linear process.
Unfortunately, all process
variables and control

valves are nonlinear to some degree.
The response to a given change in
the controller output shifts with
time, throughput, operating point
and plant conditions. The lack of
consistency in this response has sig-
nificant implications for the per-
formance of the process, not only in
the tuning of controllers but also in
recognizing degradations and
achieving optimums. 

To put this into context, it is
important to realize that controllers
are tuned, consciously or subcon-
sciously, based on a tradeoff between
performance and robustness. The
capability to tightly control at an
operating point is inversely propor-
tional to the ability to weather
changes in the behavior of the plant
without becoming oscillatory. The
operating environment for most
loops is stormy and the last thing
you want is for a control loop to
introduce more variability. Conse-
quently, all controllers are detuned
(backed off from maximum per-
formance) to some degree to provide
a smooth response despite the
inevitable changes in the process
dynamics. An industrial controller
approaches turns cautiously because
it doesn’t know what lies ahead.

The roadmap
In practice, three parameters are
used to provide a first-order-plus-
dead-time model of the process
dynamics and to capture the essence
of the process response. The most
important of these is loop dead time,
which is the time delay between a
change in a manipulated or distur-
bance variable (process input) and
the resultant shift in a controlled
variable (process output). If the dead
time were zero and the measurement
and valve resolution were unlimited,
tuning would not be an issue and per-
fect control would be possible. But
dead time always exists and encom-
passes the inherent delays from plug
flow (transportation delays), valves

(dead band and stick-slip) and digital
devices (scan and execution time
intervals) and the secondary lags from
mixing, heat transfer, actuator, sen-
sors and volumes in series [1].

The next most important parame-
ter is process gain, which is the final
change in a process output for a
given shift in a process input. A high
process gain (sensitivity) is desirable
because it improves the inference of
a process condition from a measure-
ment. A highly sensitive column,
evaporator or reactor temperature
measurement is important to recog-
nize and control changes in composi-
tion. However, a high process gain
amplifies the stick-slip in valves and
the noise from non-ideal mixing. 

The third parameter is the process
time constant, which is the time to
reach 63% of the final change in a
controlled variable after the process
has started to move (after the dead
time). In plants, this time constant
rarely is constant. For a large back-
mixed volume, it essentially is the
residence time if the secondary lags
take a back seat [2].

Controller tuning settings can be

computed from this first-order-plus-
dead-time model. The shifts in these
parameters reveal changes in the
operation, process, equipment,
valves and sensors. The size, direc-
tion and characteristics of these
movements can provide a roadmap,
knowledge of the terrain, and a full
throttle controller to reach the desti-
nation of maximum process effi-
ciency and minimum downtime.

Today’s speed bump
Nearly al l  adaptive control lers
presently used at chemical plants
take a relat ively long t ime to
observe changes in the process vari-
able before adjusting tuning set-
t ings.  The tuning rules are
imbedded and usually unknown to
the user.  Today’s most common
adaptive controller relies on pattern
recognition and will, if necessary,
increase the control ler  gain to
induce oscillations so it can get a
better handle on the maneuverabil-
ity of the process. The size of the
transients or oscillations and the
time required for identification can
translate into significant process

>> Polymerization Control

Figure 1. In plant trials, reactor feedback and feedforward loops were based on pH.
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variability and lead to an adapta-
tion rate slower than the rate of
change of the process parameters.
For example, it may take four or
more oscillations each with a period
of four hours (thus two shifts) for
these adaptive controllers to search
and find the best tuning settings for
the temperature controller on a dis-
til lation column. Most adaptive
controllers are playing catch-up even
if they have seen the same situation a
thousand times before. At best, these
controllers provide a snapshot of the
current tuning requirements and no
real insight as to where the process
has been or where it is going. Also,
sudden unexplained shifts in the tun-
ing settings or bursts of oscillations
reduce the operator’s confidence and
thus lower prospects the controllers
will run in the adaptive mode and be
used in future applications.

In contrast, the next generation
of adaptive controllers will iden-
tify a process model quickly and
automatically and provide process
model parameters that can be dis-
played, trended and diagnosed.
The availability of a suite of tun-
ing methods will enable selection
of the method that best matches
the process and the plant objec-
t ives .  Fur thermore ,  these  con-
trollers will remember the results

for similar conditions, eliminate
repetitious identification and take
the initiative. 

Such a controller, which now
has been demonstrated in plant
tests, can identify the dead time,
process gain and time constant for
both manipulated and disturbance
variables and save these as a func-
tion of a key variable. The user can
apply the recommended tuning
method or choose an alternative to
compute the tuning settings for the
current and memorized conditions.
When the key variable indicates
the process has changed, the tuning
then i s  scheduled based on the
process model saved in the operat-
ing region. The controller remem-
bers  the  resul ts  f rom previous
excursions and does not wait to
recognize old territory. For exam-
ple ,  for  loops  with nonl inear
installed valve characteristics and
nonlinear controlled variables such
as  pH, the  model  and tuning i s
scheduled based on the controller
output  and input ,  respect ive ly.
Totalized feed determines model
and tuning schedules for changes
in the fouling of column trays, heat
transfer surfaces and sensors and
in catalyst activity. The controller
takes preemptive action based on
operating region and in so doing

ref ines  i t s  knowledge of  the
process model. Changes in these
models can flag shifts in system
flow resistances and compositions.

Better navigation
The controller computes the integrated
squared error (ISE) between the model
and the process output for changes in
each of three model parameters from
the last best value. Exploring all com-
binations of three values (low, middle
and high) for the three parameters
requires a total of 27 models. The cor-
rection in each model parameter is
interpolated by the application of
weighting factors that are based on the
ISE for each model normalized to a
total ISE for all the models over the
period of interest. After the best values
are computed for each parameter, they
are assigned as the middle values for
the next iteration [3]. This model
switching with interpolation and
recentering has been proved mathe-
matically to provide an optimum
approach to the correct model [4]. The
search is done sequentially — first for
the process gain, then the dead time
and finally the time constant — which
reduces the number of models to nine
that must be evaluated at any given
time [3]. The sidebar shows the graph-
ical concept to find the best process
gain and the equations of parameter

>> Process Gain

Figure 2. The adaptive controller pinpointed three distinct regions for gain
for pH control.

>> Feedforward Model

Figure 3. The controller identified this adaptation of the model for changes
in the  fraction of splitter time.
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evaluation and interpolation in the
adaptation algorithm.

Implementation of the adaptive
control, via the control system’s
graphical configuration studio, sim-
ply involves selecting a disturbance
variable for feedforward action and
choosing the state variables and
number of regions for scheduling the
feedback and feedforward models.
The identification time interval and
model parameters and limits are ini-
tialized based on the existing tuning
settings. The controller starts in the
“observe” mode, where it will con-
tinuously and automatically identify
the process model when it sees
changes in the controller’s setpoint,
output or feedforward action. 

The controller also can be switched
to the “learn” mode, where it will
update the feedback and feedforward
process models in each region with an
excursion. In addition, a “schedule”
mode allows the controller to use the
models in each region to change its
settings. The highest level is the
“adapt” mode, where the adaptive
controller immediately uses any iden-
tified improvements. 

The test drive
The adaptive controller was tested on
the reactor shown in Figure 1, where the
ratio of base to acid reactants deter-

mines the degree of polymerization of
the product. As a sensitive measure of
this ratio, pH is used to manipulate the
valve for the base reactant. The acid feed
is the thickened slurry discharge of a
centrifuge after it passes through a
diverter that splits the flow between the
reactor and a dryer on a time basis. The
feed to the centrifuge is the bottoms
flow from a hydroclone. Manipulation
of the outlet temperature from a heat
exchanger in the recirculation line con-
trols the vessel temperature. There actu-
ally are two heat exchangers in parallel,
with individual temperature controllers
reset by the reactor temperature con-
troller. Adjustment of a discharge flow
controller setpoint controls the level.
The mass flow feed to the hydroclone
multiplied by the proper fraction of
splitter time was added as a feedforward
signal to the pH and level controller out-
puts and the base valve position was
added as a feedforward signal to the
temperature controller output.

The pH process gain was a nonlin-
ear function of the pH operating
point. The setpoint was on a rela-
tively flat portion of the titration
curve but disturbances could cause
excursions into a much steeper upper
portion near the neutral point. After
selecting pH as the state variable for
scheduling the feedback and feedfor-
ward process models, the adaptive

pH controller identified three regions,
as shown in Figure 2, that reflect the
changes in slope of the titration curve
in the operating range. The feedback
models were determined from set-
point changes. The feedforward
process models were identified, as
shown in Figure 3, whenever there
was a sufficient change in the distur-
bance variable caused by a shift in the
fraction of the splitter cycle time to
the reactor.

Because the feedforward signal
for the temperature controller is a
valve position, the feedforward
model gain was scheduled based on
pH controller output. 

The adaptive controller, through
identifying changes made during the
normal course of operation, improved
the tuning of the level, pH and temper-
ature loops. The controller responses
before and after adaptive control was
implemented are shown in Figures 4
and 5, respectively. 

Just as important as the improve-
ment in the tuning settings was the
diagnosis of problems allowed by
the process models.  A dramatic
reduction in the process gain of the
secondary temperature loop for
exchanger “A” was linked to an
increase in the system resistance. It
was found that the coolant block
valves had been partially closed

>> Previous Response

Figure 4. Prior to use of adaptive control, reactor loops responded poorly to
a feed upset.

>> Improved Performance

Figure 5. Response to a feed upset has dramatically improved thanks to the
adaptive controller.
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because poor temperature control in
the winter caused exchanger frost-
ing. The essentially zero gain of the
secondary temperature loop for
exchanger “B” (not shown in Figure
1) corresponded to a broken linkage
in a butterfly valve. An increase in
the pH oscillations from the cycle
time of the splitter was attributed to
cleaner electrodes due to an increase
in the recirculation flow rate. The
flow control valve also had an insuf-
ficient pressure drop available to
provide more than half the scale of
the discharge flow controller. Dips
in the flow measurement followed
by a burst of flow after the valve
opening increased were surmised to
be caused by the intermittent plug-
ging and sloughing of cake in the
valve and to indicate an increase in
slurry concentration. Finally,
changes in the hydroclone efficiency
appeared to be based on shifts in the
feedforward-model process gain for
the pH controller.

Back to the future
This new generation of adaptive
controller allows all PID (propor-
tional-integral-derivative) loops to
run in the adaptive mode,  with
process model parameters saved in
a data historian and analyzed for
shif ts  in the plant ,  sensors  and
valves. The information on changes
in the process  model  may be
directly used to monitor loop per-
formance and to provide more
intelligent diagnostics. The models
can supply the dynamics for simu-
lations and identify candidates for
feedforward control and advanced
control techniques. For example,
loops dominated by dead time or
exhibiting disturbance models for
multiple variables are candidates
for model predictive control [5].
Feedforward models of composi-
tions could be used for dynamic
onl ine property est imators  and
loops dominated by a single large
time constant could benefit from

Fuzzy Logic  Control  [6] .  The
dynamic process models can serve
to create or adapt real-time simula-
tions for prototyping new control
strategies, exploring “what if” sce-
narios and training operators [5].
Process gains that decrease or time
constants that increase with feed
totals (e.g., reflecting the need for
cleaning or catalyst deactivation)
are ripe for real-time optimization
of the run time.

The beauty of this route is that the
models and tuning settings are available
from the adaptive controller for a
higher level of control through a better
knowledge of the topology. CP
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